Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
lc_generation [2022/02/10 16:09] theoastro |
lc_generation [2023/06/02 17:05] (current) theoastro |
||
|---|---|---|---|
| Line 12: | Line 12: | ||
| Note that the parameters vary from model to model - an overview can be found [[https:// | Note that the parameters vary from model to model - an overview can be found [[https:// | ||
| - | | + | tmin=0.1 |
| - | t = np.arange(tmin=0.1, tmax=20.0 | + | |
| - | lc_model = nmma.em.model.SVDLightCurveModel(model=model_key, sample_times = t, svd_path = " | + | |
| + | t = np.arange(tmin, | ||
| + | lc_model = nmma.em.model.SVDLightCurveModel(model=' | ||
| By providing input values for a chosen model, a kilonova light curve in different photometric bands can be generated using: | By providing input values for a chosen model, a kilonova light curve in different photometric bands can be generated using: | ||
| Line 23: | Line 25: | ||
| ' | ' | ||
| ' | ' | ||
| - | lbol, mag= lc_model.generate_lightcurve(t, | + | lbol, mag= lc_model.generate_lightcurve(t, |
| Through the filter keys such as u, | Through the filter keys such as u, | ||
| Line 32: | Line 34: | ||
| === Gamma-ray burst afterglows | === Gamma-ray burst afterglows | ||
| In order to compute GRB afterglow light curves, NMMA uses the model '' | In order to compute GRB afterglow light curves, NMMA uses the model '' | ||
| + | import nmma.em.model | ||
| + | t_day = np.arange(1., | ||
| + | grb_model = nmma.em.model.GRBLightCurveModel(t_day, | ||
| + | params_range = { | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | lbol, mag = grb_model.generate_lightcurve(t_day, | ||
| + | GRB afterglow light curves can be accessed with the filter keys '' | ||
| + | |||
| + | === Shock-cooling supernovae | ||
| + | NMMA uses a model from [[https:// | ||
| + | |||
| + | t = np.arange(tmin=0.1, | ||
| + | sn_model = nmma.em.model.ShockCoolingLightCurveModel(sample_times = t, parameter_conversion=None, | ||
| + | params_range = { | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | ' | ||
| + | lbol, mag = sn_model.generate_lightcurve(t, | ||
Last modified: le 2022/02/10 16:09
