This is an old revision of the document!
Combined light curve inference
Whereas the previous section dealt with stand-alone Bayesian inferences with different models (kilonova, GRB afterglow), NMMA enables to run a combined inference using multiple models. Below, we show examples for 2 different types of sources:
- Binary Neutron Star (BNS)
- Neutron-Star-Black-Hole (NSBH)
Here, we use the observed GRB211211A signal as a case study to run Bayesian inference with multiple models. In principle, this sort of signal can originate from a BNS source, but also a NSBH source could be explain the observed signature.
Example: BNS source
If we assume a BNS source, we can use the model TrPi2018
for modelling Gamma-ray burst afterglows along with the kilonova model Bu2019lm
. To run a joint inference with these 2 models, we use the observed data GRB211211A.txt
, an adapted prior file which includes prior settings for both models and the SVD grid for the Bu2019lm
kilonova model. The joint inference can be started using the command:
mpiexec -np 16 light_curve_analysis --model Bu2019lm,TrPi2018 --svd-path ./ --interpolation_type sklearn_gp --outdir outdir --label GRB211211A --prior ./Bu2019lm_TrPi2018GRB211211A.prior --tmin 0.1 --tmax 14 --dt 0.1 --error-budget 1 --nlive 1024 --Ebv-max 0 --trigger-time 59559.54791666667 --data ./GRB211211A.txt --plot --filters u,g,r,i,J,K --xlim 0,14 --ylim 26,16
A potential afterglow of a kilonova could for example be analyzed with Bu2019lm and the GRB afterglow with the model TrPi2018
Example: NSBH source
source: kilonova analyzed with Bu2019lm and GRB afterglow anaylzed with TrPi2018