===== List of available lightcurve models ===== In the following, we present a list of kilonova models, for the most important ones, we provide references and list the input parameters. ==== KaKy2016 ==== [[https://arxiv.org/pdf/1601.07711.pdf|Kawaguchi et al., Astrophys.J. 825 (2016) 1, 52]] Simplified analytical model for the description of BHNS systems. ---- ==== DiUj2017 ===== [[https://arxiv.org/pdf/1612.03665.pdf|Dietrich and Ujevic, Class.Quant.Grav. 34 (2017) 10, 105014]] Simplified analytical model for the description of BNS systems. ---- ==== Me2017 ==== [[https://arxiv.org/pdf/1910.01617.pdf|Metzger (2017). Living Rev.Rel. 23 (2020) 1, 1]] Simplified, spherically-symmetric toy-model following the description of Brian Metzger's Living review article. Input parameters: mej --> total ejecta mass vej --> ejecta velocity beta --> geometry factor [default = 3] kappa_r --> opacity ---- ==== SmCh2017 ==== [[https://arxiv.org/pdf/1710.05841.pdf|Smartt et al. (2017), Nature 551 (2017) 7678, 75-79]] Input parameters: mej --> ejecta mass vej --> ejecta velocity slope_r --> slope parameter kappa_r --> opacity ---- ==== WoKo2017 ==== [[https://arxiv.org/abs/1705.07084|Wollaeger et al. (2017), Mon.Not.Roy.Astron.Soc. 478 (2018) 3, 3298-3334]] Input parameter: mej vej theta_r kappa_r ---- ==== RoFe2017 ==== [[https://arxiv.org/pdf/1710.05445.pdf|Rosswog et al. (2017), Astron.Astrophys. 615 (2018) A13]] Input parameters: mej --> ejecta mass vej --> ejecta velocity Ye --> electron fraction ---- ==== BaKa2016 ==== Barnes et al. (2016) arxiv: 1605.07218 and 1705.07084 Input parameters: mej --> ejecta mass vej --> ejecta velocity ---- ==== Ka2017 ==== Kasen (2017) Spherical symmetric model based on full-ratiative transfer simulations. Interpolation towards arbitary ejecta quantities through Gaussian-Process Regression. Input parameters: mej --> ejecta mass vej --> ejecta velocity Xej --> lantganide raction ---- ==== Ka2017x2 ==== Simple sum of two spherically symmetric Ka2017 models. Input parameters: mej1 --> ejecta mass of first component vej1 --> ejecta velocity of first component Xej1 --> lanthanide fraction of first component mej2 --> ejecta mass of second component vej2 --> ejecta velocity of second component Xej2 --> lanthanide fraction of second component ---- ==== Ka2017x2 ==== Simple sum of three spherically symmetric Ka2017 models. Input parameters: mej1 --> ejecta mass of first component vej1 --> ejecta velocity of first component Xej1 --> lanthanide fraction of first component mej2 --> ejecta mass of second component vej2 --> ejecta velocity of second component Xej2 --> lanthanide fraction of second component mej3 --> ejecta mass of third component vej3 --> ejecta velocity of third component Xej3 --> lanthanide fraction of third component ---- ==== Ka2017inc_model_ejecta ==== Input parameters: mej --> ejecta mass vej --> ejecta velocity Xej --> lantganide reaction iota --> inclination angle ---- ==== Ka2017x2inc_ejecta ==== Simple sum of two inclination-dependent Ka2017inc models. The model does not include photon absorption or any kind of interaction between the different components. Input parameters: mej1 --> ejecta mass of component 1 vej1 --> ejecta velocity of component 1 Xej1 --> lantganide raction of component 1 mej2 --> ejecta mass of component 2 vej2 --> ejecta velocity of component 2 Xej2 --> lantganide raction of component 2 iota2 --> inclination angle ---- ==== Ka2017x3inc_ejecta ==== Simple sum of three inclination-dependent Ka2017inc models. The model does not include photon absorption or any kind of interaction between the different components. Input parameters: mej1 --> ejecta mass of component 1 vej1 --> ejecta velocity of component 1 Xej1 --> lantganide raction of component 1 mej2 --> ejecta mass of component 2 vej2 --> ejecta velocity of component 2 Xej2 --> lantganide raction of component 2 mej2 --> ejecta mass of component 3 vej2 --> ejecta velocity of component 3 Xej2 --> lantganide raction of component 3 iota --> inclination angle ---- ==== Bu2019_model_ejecta ==== Input parameters: mej --> ejecta mass T --> temperature ---- ==== Bu2019inc ==== Input parameters: mej --> ejecta mass phi --> angle between dynamical tidal and shock ejecta theta --> viewing angle ---- ==== Bu2019_op_model_ejecta ==== kappaLF, gammaLF, kappaLR, gammaLR ==== Bu2019_ops_model_ejecta ==== kappaLF, kappaLR, gammaLR ---- ==== Bu2019lf mej_dyn -> dynamical ejecta mej_wind --> wind ejecta phi --> angle between shock and tidal ejecta theta --> viewing angle ---- ==== Bu2019lr ==== mej_dyn -> dynamical ejecta mej_wind --> wind ejecta phi --> angle between shock and tidal ejecta theta --> viewing angle ==== Bu2019lm ==== mej_dyn -> dynamical ejecta mej_wind --> wind ejecta phi --> angle between shock and tidal ejecta theta --> viewing angle ==== Bu2019lw ==== mej_dyn -> dynamical ejecta mej_wind --> wind ejecta phi --> angle between shock and tidal ejecta theta --> viewing angle ==== Bu2021ka_model_ejecta ==== mej_dyn -> dynamical ejecta mej_wind --> wind ejecta phi --> angle between shock and tidal ejecta theta --> viewing angle kappa --> angle for opacity rescaling ---- ==== Bu2019inc_TrPi2018 ==== Combination of Bulla2019_inc and TrPri2018, i.e., combining a GRB jet and a kilonova. ---- ==== TrPi2018_model ==== input parameters: theta_v, E0, theta_c, theta_w, n, p, epsilon_E, epsilon_B ---- ==== Ka2017_TrPi2018_model ==== input parameters: mej,vej,Xlan,theta_v, E0, theta_c, theta_w, n, p, epsilon_E, epsilon_B ---- ==== Bu2019inc_TrPi2018_model ==== input parameters: mej,phi,theta_v, E0, theta_c, theta_w, n, p, epsilon_E, epsilon_B ---- ==== Ka2017_TrPi2018_A_model ==== input parameters: mej,vej,Xlan,theta_v, E0, theta_c, theta_w, n, p, epsilon_E, epsilon_B, A ---- ==== Ka2017_A_model ==== input parameters: mej,vej,Xlan,A Ka2017 model in which the total luminosity is scalled with an additional factor A, i.e., L_{bol} = A * L_{Ka2017,bol} ---- ==== Me2017_A_model ==== input parameters: mej,vej,beta,kappa_r,A --> is a _ejecta model without the suffix Me2017 model in which the total luminosity is scalled with an additional factor A, i.e., L_{bol} = A * L_{Me2017,bol}