Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gwem_resampling [2022/05/19 09:31]
theoastro
gwem_resampling [2023/01/04 11:46] (current)
theoastro
Line 1: Line 1:
 ===== GW-EM Resampling ===== ===== GW-EM Resampling =====
  
-In NMMA, it is possible to use the results from GRB, kilonova and GRB afterglow inferences to get estimates on the binary properties. This is based on phenomenological relations, i.e., via fits based on numerical-relativity relations.  +In NMMA, it is possible to use the results from GW, kilonova and GRB afterglow inferences to get estimates on the binary properties. This is based on phenomenological relations, i.e., via fits based on numerical-relativity relations.  
-The dynamical ejecta mass,  \(M_{ej}^{dyn}\), is connected to the binary properties through quasi-universal relations.+The dynamical ejecta mass,  \(M_{ej}^{dyn}\), is connected to the binary properties through quasi-universal relations, see [[https://arxiv.org/pdf/2205.08513.pdf|Pang et al. 2022]].
  
 For the GW-EM resampling, the following input files are required:  For the GW-EM resampling, the following input files are required: 
Line 12: Line 12:
   * ''GWprior'' - a prior file for sources observed via gravitational waves   * ''GWprior'' - a prior file for sources observed via gravitational waves
  
 +=== Estimating BNS source properties  ===
 +Here, we illustrate the resampling on the example of a previous Bayesian inference on the observed data of the event GRB211211A, see section [[https://enlil.gw.physik.uni-potsdam.de/dokuwiki/doku.php?id=lc_comb_inference|Combined light curve inference]]. 
 +
 +For the ''GWsamples'' input file, we need to generate some fiducial dummy GW samples. A script for the generation can be found [[GWsample-generation|here]]. The GW sample generation is based on the EOS set ''15nsat_cse_uniform_R14'' which can be found on [[https://zenodo.org/record/6106130#.YoYSi3VByV5|Zenodo]]. The ''EMprior'' file is the same as specified [[https://enlil.gw.physik.uni-potsdam.de/dokuwiki/doku.php?id=prior-grb211211a|here]], and for the ''GWprior'' file we can use this example [[GWprior-GRB211211A|prior file]]. 
 +
 +Finally, to run the GW-EM-resampling, we can use this command:
 +  mpiexec -np 6 gwem_resampling --outdir outdir --GWsamples ./GWsamples.dat --GWprior ./GW.prior --EMsamples ./GRB211211A_posterior_samples.dat --EOSpath ./15nsat_cse_uniform_R14/macro/ --Neos 5000 --EMprior ./Bu2019lm_TrPi2018GRB211211A.prior --nlive 1024
 +
 +The result will be a posterior file containing information on: 
 +  * the chirp mass  \(M_{c}\),
 +  * mass ratio  \(q\),
 +  * Tidal deformability  \(\tilde{\Lambda}\),
 +  * dynamical ejecta mass error  \(\alpha\),
 +  * dynamical ejecta mass fraction  \(\zeta\)
 +
 +A corner plot is shown below: 
 +{{:corner_samples_mcq.jpg}}
 +
 +=== Estimating NSBH source properties  ===
 +In order to estimate the properties of a NSBH system, you need to adjust the GWsamples and GWprior file accordingly and run the resampling with the argument ''withNSBH'' (otherwise, you will run for a BNS system).
 +  gwem_resampling --outdir outdir --GWsamples GWsamples_NSBH.dat --GWprior GWNSBH.prior --withNSBH --EMsamples GRB211211A_NSBH_posterior_samples.dat --EOSpath 15nsat_cse_uniform_R14/macro/ --Neos 5000 --EMprior Bu2019nsbh_TrPi2018_GRB211211A.prior --nlive 1024  
  
-Here, we illustrate the resampling on the example of a previous Bayesian inference on the observed data of the event GRB211211A, see section [[https://enlil.gw.physik.uni-potsdam.de/dokuwiki/doku.php?id=lc_comb_inference|Combined light curve inference]]. 
Last modified: le 2022/05/19 09:31